ENCOPIM Servo-Pneumatics consists on:

- Standards-based pneumatic drives (cylinders and semi-rotary drives) and valves,
- Powered by regular air at standard operating pressures (typically 6 bar),
- Equipped with transducers (position, force, torque, angle, …),
- Servo-controlled in a high frequency closed-loop at real time
- Using adaptative control algorithms specially aimed at non-lineal systems, such as the Servo-Pneumatic ones due to the high compressibility rate of air.
Advantages of ENCOPIM Servo-Pneumatics in comparison with servo-hydraulics

- Cheaper drives (cylinders and rotary drives) and valves,
- Power packs not required: regular air lines are available (for free) at laboratories and factories,
- Cleaner: no oil leaks,
- Easier configuration and operation,
- Very reliable “on the shelf” components world-wide available (no dependence on the supplier).

ENCOPIM Servo-Pneumatics allows:

- Perform static (strength and deflection), fatigue (endurance), and dynamic (impact) tests on materials, components, assemblies and systems.
- Test with the same or better accuracy than using well-known servo-hydraulic systems but,
- At an extremely competitive price.
- Focussed to:
 - Research & Development Labs,
 - Quality Departments,
 - Control at Manufacturing Lines.

⚠️ Quality Labs do not have usually costly servo-hydraulic equipments among their facilities. Therefore, they have now the possibility of performing very accurate tests at low cost thanks to ENCOPIM Servo-Pneumatic technology!
ENCOPIM’s compact digital servo controller (SCDC) is designed for static, fatigue, and dynamic tests, uni or multi-axial, on materials, components, assemblies and systems, and suitable for a variety of actuating technologies: Servo-Pneumatic, servo-hydraulic, servo-electric and electro-mechanic.

The test management (parameter settings, results display and analysis) is run by RTEST, user-friendly software featuring advanced closed-loop control algorithms, installed on an external Laptop or PC linked to the SCDC via Ethernet.

RTEST is multi-platform software for a wide range of applications: from a simple data acquisition to complex multi-axial fatigue tests reproducing inputs taken from real service, from static uni-axial tests to repetitive dynamic tests.

See data-sheet.
Parameters for Linear Actuators

- Max. “reasonable” Force: ±20 kN (piston Ø200 mm at 6 bar)

 Forces up to ±46 kN with piston Ø320 mm at 6 bar are “possible” but not always “reasonable”.
 Mostly Forces up to ±7 kN (piston Ø125 mm at 6 bar).

- Max. Stroke length: 1100 mm
 Mostly Strokes up to 500 mm.

- Speed range: 5 – 1000 mm/s
 Lower and higher speeds are possible under special configurations.

- Frequency range: mostly up to 10-15 Hz
 Higher frequencies are possible under special configurations.
Parameters for **Semi-Rotary Actuators**

- Max. Torque: ±20 Nm at 6 bar.
- Max. Angle: 270º (mostly 180º).
- Frequency: up to 10 Hz.

Higher values are possible under special configurations.

Examples of applications on Automotive sector

- Pedals and pedal boxes static strength and fatigue endurance.
- Handbrake handle fatigue endurance test.
- Steering wheel strength and fatigue endurance.
- Seats fatigue endurance, knee and bottom impact, «Bump and Squirm» tests.
- Seat cushions wear test.
- Linear free motion impact test for passive safety.
- Pendulum head impact test for passive safety.
- Slam of doors, bonnet, tail gate, etc. on vehicle.
- Door components (hinges, retainers, handles, looks, etc.) fatigue endurance.

ENCOPIM approach to the market is develop customized applications. The above mentioned are just illustrative examples.
Examples of applications on Automotive sector

Pedals and pedal boxes (12 actuators with climatic chambers)
Examples of applications on Automotive sector

Seats

![Seats Image](image1)

Examples of applications on Automotive sector

Head impact test rig

![Head Impact Test Rig Image](image2)
Examples of applications on Automotive sector

Slam doors on vehicle

Door components